Previous Page  89 / 96 Next Page
Information
Show Menu
Previous Page 89 / 96 Next Page
Page Background

T

he

role

of

regulatory

T

cells

,

interleukin

-10

and

in

vivo

scintigraphy

in

autoimmune

and

idiopathic

diseases

– T

herapeutic

perspectives

and

prognosis

R

ev

A

ssoc

M

ed

B

ras

2017; 63(12):1090-1099

1099

31. Taams LS, Smith J, Rustin MH, Salmon M, Poulter LW, Akbar AN. Human

anergic/suppressive CD4(+)CD25(+) T cells: a highly differentiated and

apoptosis-prone population. Eur J Immunol. 2001; 31(4):1122-31.

32. Wing K, Ekmark A, Karlsson H, Rudin A, Suri-Payer E. Characterization of

human CD25+ CD4+ T cells in thymus, cord and adult blood. Immunology.

2002; 106(2):190-9.

33.

Levings MK, Sangregorio R, Sartirana C, Moschin AL, Battaglia M, Orban

PC, et al. Human CD25+CD4+ T suppressor cell clones produce transforming

growth factor beta, but not interleukin 10, and are distinct from type 1 T

regulatory cells. J Exp Med. 2002; 196(10):1335-46.

34.

Fontenot JD, GavinMA, Rudensky AY. Foxp3 programs the development and

function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003; 4(4):330-6.

35.

Seddiki N, Santner-Nanan B, Martinson J, Zaunders J, Sasson S, Landay A,

et.al.

Expression of interleukin (IL)-2 and IL-7 receptors discriminates

between human regulatory and activated T cells. J Exp Med. 2006;

203(7):1693-700.

36.

Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky

AY. Regulatory T cell lineage specification by the forkhead transcription

factor foxp3. Immunity. 2005; 22(3):329-41.

37.

Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, et al. CD127 expression

inversely correlates with FoxP3 and suppressive function of human CD4+

T reg cells. J Exp Med. 2006; 203(7):1701-11.

38.

Möttönen M, Heikkinen J, Mustonen L, Isomäki P, Luukkainen R, Lassila

O. CD4+ CD25+ T cells with the phenotypic and functional characteristics

of regulatory T cells are enriched in the synovial fluid of patients with

rheumatoid arthritis. Clin Exp Immunol. 2005; 140(2):360-7.

39.

van Amelsfort JM, Jacobs KM, Bijlsma JW, Lafeber FP, Taams LS. CD4(+)

CD25(+) regulatory T cells in rheumatoid arthritis: differences in the presence,

phenotype, and function between peripheral blood and synovial fluid.

Arthritis Rheum. 2004; 50(9):2775-85.

40. Cao D, Malmström V, Baecher-Allan C, Hafler D, Klareskog L, Trollmo C.

Isolation and functional characterization of regulatory CD25brightCD4+

T cells from the target organ of patients with rheumatoid arthritis. Eur J

Immunol. 2003; 33(1):215-23.

41. Cao D, van Vollenhoven R, Klareskog L, Trollmo C, Malmström V.

CD25brightCD4+ regulatory T cells are enriched in inflamed joints of patients

with chronic rheumatic disease. Arthritis Res Ther. 2004; 6(4):R335-46.

42. Cao D, Börjesson O, Larsson P, Rudin A, Gunnarsson I, Klareskog L, et al.

FOXP3 identifies regulatory CD25bright CD4+ T cells in rheumatic joints.

Scand J Immunol. 2006; 63(6):444-52.

43.

Ehrenstein MR, Evans JG, Singh A, Moore S, Warnes G, Isenberg DA, et al.

Compromised function of regulatory T cells in rheumatoid arthritis and

reversal by anti-TNFalpha therapy. J Exp Med. 2004; 200(3):277-85.

44.

Nistala K, Moncrieffe H, Newton KR, Varsani H, Hunter P, Wedderburn LR.

Interleukin-17-producing T cells are enriched in the joints of children with

arthritis, but have a reciprocal relationship to regulatory T cell numbers.

Arthritis Rheum. 2008; 58(3):875-87.

45.

van Amelsfort JM, van Roon JA, Noordegraaf M, Jacobs KM, Bijlsma JW,

Lafeber FP, et al. Proinflammatory mediator-induced reversal of CD4+,CD25+

regulatory T cell-mediated suppression in rheumatoid arthritis. Arthritis

Rheum. 2007; 56(3):732-42.

46.

Falcão PL, Malaquias LC, Martins-Filho OA, Silveira AM, Passos VM, Prata

A, et al. Human Schistosomiasis mansoni: IL-10 modulates the in vitro

granuloma formation. Parasite Immunol. 1998; 20(10):447-54.

47.

Bacchetta R, Gambineri E, Roncarolo MG. Role of regulatory T cells and

FOXP3 in human diseases. J Allergy Clin Immunol. 2007; 120(2):227-35.

48.

Lavrnic D, Losen M, Vujic A, De Baets M, Hajdukovic LJ, Stojanovic V, et al.

The features of myasthenia gravis with autoantibodies to MuSK. J Neurol

Neurosurg Psychiatry. 2005; 76(8):1099-102.

49. Qureschi AI, Choudhry MA, Akbar MS, Mohammad Y, Chua HC, Yahia AM,

et al. Plasma exchange versus intravenous immunoglobulin treatment in

myasthenic crisis. Neurology. 1999; 52(3):629-32.

50.

Rønager J, Ravnborg M, Hermansen I, Vosrstrup S. Immunoglobulin

treatment versus plasma exchange in patients with chronic moderate to

severe myasthenia gravis. Artif Organs. 2001; 25(12):967-73.

51.

Myasthenia Gravis Clinical Study Group. A randomized clinical trial comparing

prednisone and azathioprine in myasthenia gravis. Results of the second

interim analysis. J Neurol Neurosurg Psychiatry. 1993; 56(11):1157-63.

52.

Falcão PL. Método e usos da técnica de citometria de fluxo para controle e

acompanhamento de lesões musculares em atletas submetidos a esforço físico;

abordagem imunológica e condicionamento físico. INPI. 2002, PI0206722-6.

53.

Lindberg C, Andersen O, Lefvert AK. Treatment of myasthenia gravis with

methylprednisolone pulse: a double blind study. Acta Neurol Scand. 1998;

97(6):370-3.

54.

Palace J, Newsom-Davis J, Lecky B. A randomized double-blind trial of

prednisolone alone or with azathioprine in myasthenia gravis. Myasthenia

Gravis Study Group. Neurology. 1998; 50(6):1778-83.

55.

Evoli A, Batocchi AP, Palmisani MT, Lo Monaco ML, Tonali P. Long-term

results of corticosteroid therapy in patients with myasthenia gravis. Eur

Neurol. 1992; 32(1):37-43.

56.

Pereira ALC, Bolzani FCB, StefaniM, CharlínR. Uso sistêmico de corticosteróides:

revisão da literatura. Med Cutan Iber Lat Am. 2007; 35(1):35-50.

57.

Signore A, Soroa VA, De Vries EF. Radiobelled white blood cells or FDG for

imaging of inflammation and infection? Q J Nucl Med Mol Imaging. 2009;

53(1):23-5.

58.

Becker W, Meller J. The role of nuclear medicine in infection and inflammation.

Lancet Infect Dis. 2001; 1(5):326-33.

59.

Imam SK, Lin P. Radiotracers for imaging of infection and inflammation:

a review. World J Nucl Med. 2006; 5(1):40-55.

60. Gemmel F, Dumarey N, Welling M. Future diagnostic agents. Semin Nucl

Med. 2009; 39(1):11-26.

61.

Rennen HJJM, Boerman OC, Oyen WJG, Corstens FHM. Scintigraphy

imaging of inflammatory processes. Curr Med Chem. 2002; 1(1):63-75.

62.

Brasileiro CB, Cardoso VN, Ruckert B, Campos TPR. Avaliação de processos

inflamatóriosnaarticulaçãotemporomandibularempregandoleucócitosautólogos

marcados com tecnécio-99memmodelo animal. Radiol Bras. 2006; 39(4):283-6.

63.

Brasileiro CB, Pacheco CM, Queiroz-Junior CM, Lima CF, Silva JB, Campos TP.

(99m)Tc-labeled-1-thio-beta-d-glucose as a new tool to temporomandibular

joint inflammatory disorders diagnosis. Appl Radiat Isto. 2010; 68(12):2261-7.

64. Campos TPR, Brasileiro CB, MaiaMJO. Radiofármaco e suas composições para

cintilografia de sítios inflamatórios e infecciosos. INPI 2010, PI0904754-9.

65.

Maia MJO, Campos TPR. Síntese e caracterização do 99mTc-5-thio-d-glicose

para SPECT. In: Anais do 21 CBEB2008. Rio de Janeiro: SBEB; 2008. v. 1, p. 1-8.

66.

Dalmázio I, Campos TPR. Compostos de coordenação metal-sacarídeo para

terapia e diagnóstico. INPI 2010, PI1005216-0.

67.

Kaneyama K, Segami NT, Sun W, Sato J, Fujimura K. Analysis of tumor

necrosis factor-

α

, interleukin-6, interleukin-1

β

, soluble tumor necrosis

factor receptors I e II, interleukin-6 soluble receptor, interleukin-1 soluble

receptor type II, interleukin-1 receptor antagonist, and protein in the synovial

fluid of patients with temporomandibular joint disorders. Oral Surg Oral

Med Oral Pathol Oral Radiol Endod. 2005; 99(3):276-84.

68.

Sukedai M, Tominaga K, Habu M, Matsukawa A, Nishihara T, Fukuda J.

Involvement of tumor necrosis factor-alpha and interleukin-8 in antigen-

induced arthritis of the rabbit temporomandibular joint. J Oral Pathol Med.

2004; 33(2):102-10.

69.

Rennen HJ, Boerman OC, Oyen WJ, Corsten FH. Kinetics of 99m Tc-labeled

interleukin-8 in experimental inflammation and infection. J Nucl Med. 2003;

44(9):1502-9.