Previous Page  9 / 100 Next Page
Information
Show Menu
Previous Page 9 / 100 Next Page
Page Background

I

t

is

impossible

to

know

the

way

if

we

do

not

know

where

to

start

:

tidal

volume

,

driving

pressure

,

and

positive

end

-

expiratory

pressure

R

ev

A

ssoc

M

ed

B

ras

2017; 63(1):1-3

3

Mechanical ventilation in ARDS remains a major

challenge for intensive care physicians, but newly aggre-

gated knowledge and the new technologies available open

a new perspective on the path that will still be pursued.

R

eferences

1. Ochiai R. Mechanical ventilation of acute respiratory distress syndrome. J

Intensive Care. 2015; 3(1):25.

2. Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M. Pressure-volume curve

of total respiratory system in acute respiratory failure. Computed

tomographic scan study. Am Rev Respir Dis. 1987; 136(3):730-6.

3. Gattinoni L, D’Andrea L, Pelosi P, Vitale G, Pesenti A, Fumagalli R. Regional

effects and mechanism of positive end-expiratory pressure in early adult

respiratory distress syndrome. JAMA. 1993; 269(16):2122-7.

4.

Petty TL, Ashbaugh DG. The adult respiratory distress syndrome. Clinical

features, factors influencing prognosis and principles of management. Chest.

1971; 60(3):233-9.

5. Tremblay LN, Slutsky AS. Ventilator-induced lung injury: from the bench

to the bedside. Intensive Care Med. 2006; 32(1):24-33.

6. Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS. Injurious ventilatory

strategies increase cytokines and c-fos m-RNA expression in an isolated rat

lung model. J Clin Invest. 1997; 99(5):944-52.

7.

Imai Y, Parodo J, Kajikawa O, de Perrot M, Fischer S, Edwards V, et al.

Injurious mechanical ventilation and end-organ epithelial cell apoptosis

and organ dysfunction in an experimental model of acute respiratory distress

syndrome.. JAMA. 2003; 289(16):2104-12.

8.

Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2013;

369(22):2126-36.

9.

Kotur P. Mechanical ventilation – Past, present and future. Indian J Anaesth.

2004; 48(6):430-2.

10.

Slutsky AS. History of mechanical ventilation. From Vesalius to ventilator-

induced lung injury. Am J Respir Crit Care Med. 2015; 191(10):1106-15.

11.

Petrucci N, Iacovelli W. Lung protective ventilation strategy for the acute

respiratory distress syndrome. Cochrane Database Syst Rev. 2007;

(3):CD003844.

12.

Petrucci N, De Feo C. Lung protective ventilation strategy for the acute

respiratory distress syndrome. Cochrane Database Syst Rev. 2013;

(2):CD003844.

13. Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-

Filho G, et al. Effect of a protective-ventilation strategy on mortality in the

acute respiratory distress syndrome. N Engl J Med. 1998; 338(6):347-54.

14. Ventilation with lower tidal volumes as compared with traditional tidal

volumes for acute lung injury and the acute respiratory distress syndrome.

The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000;

342(18):1301-8.

15.

Brochard L, Roudot-Thoraval F, Roupie E, Delclaux C, Chastre J, Fernandez-

Mondéjar E, et al. Tidal volume reduction for prevention of ventilator-

induced lung injury in acute respiratory distress syndrome. The Multicenter

Trail Group on Tidal Volume reduction in ARDS. Am J Respir Crit Care

Med. 1998; 158(6):1831-8.

16.

Brower RG, Shanholtz CB, Fessler HE, Shade DM, White P Jr, Wiener CM,

et al. Prospective, randomized, controlled clinical trial comparing traditional

versus reduced tidal volume ventilation in acute respiratory distress syndrome

patients. Crit Care Med. 1999; 27(8):1492-8.

17.

Stewart TE, Meade MO, Cook DJ, Granton JT, Hodder RV, Lapinsky SE, et

al. Evaluation of a ventilation strategy to prevent barotrauma in patients

at high risk for acute respiratory distress syndrome. Pressure- and Volume-

Limited Ventilation Strategy Group. N Engl J Med. 1998; 338(6):355-61.

18. Villar J, Kacmarek RM, Pérez-Méndez L, Aguirre-Jaime A. A high positive

end-expiratory pressure, low tidal volume ventilatory strategy improves

outcome in persistent acute respiratory distress syndrome: a randomized,

controlled trial. Crit Care Med. 2006; 34(5):1311-8.

19. Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA,

et al. Driving pressure and survival in the acute respiratory distress syndrome.

N Engl J Med. 2015; 372(8):747-55.

20. Ventilation with lower tidal volumes as compared with traditional tidal

volumes for acute lung injury and the acute respiratory distress syndrome.

The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000;

342(18):1301-8.

21. Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M,

et al.; National Heart, Lung, and Blood Institute ARDS Clinical Trials Network.

Higher versus lower positive end-expiratory pressures in patients with the acute

respiratory distress syndrome. N Engl J Med. 2004; 351(4):327-36.

22.

Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Cooper DJ, et al.;

Lung Open Ventilation Study Investigators. Ventilation strategy using low

tidal volumes, recruitment maneuvers, and high positive end-expiratory

pressure for acute lung injury. JAMA. 2008; 299(6):637-45.

23.

Mercat A, Richard JC, Vielle B, Jaber S, Osman D, Diehl JL, et al.; Expiratory

Pressure (Express) Study Group. Positive end-expiratory pressure setting in

adults with acute lung injury and acute respiratory distress syndrome: a

randomized controlled trial. JAMA. 2008; 299(6):646-55.

24. Grasso S, Fanelli V, Cafarelli A, Anaclerio R, Amabile M, Ancona G, et al. Effects

of high versus low positive end-expiratory pressures in acute respiratory

distress syndrome. Am J Respir Crit Care Med. 2005; 171(9):1002-8.

25. Gattinoni L, Tonetti T, Cressoni M, Cadringher P, Herrmann P, Moerer O,

et al. Ventilator-related causes of lung injury: the mechanical power. Intensive

Care Med. 2016; 42(10):1567-75.

26.

de Carvalho WB, Fonseca MC, Johnston C. Electric impedance tomography,

the final frontier is close: the bedside reality. Crit Care Med. 2007;

35(8):1996-7.