Previous Page  102 / 110 Next Page
Information
Show Menu
Previous Page 102 / 110 Next Page
Page Background

G

omes

KMS

et

al

.

188

R

ev

A

ssoc

M

ed

B

ras

2017; 63(2):180-189

7.

Patel M, Yang S. Advances in reprogramming somatic cells to induced

pluripotent stem cells. Stem Cell Rev. 2010; 6(3):367-80.

8.

Johnson MH, Cohen J. Reprogramming rewarded: the 2012 Nobel Prize for

Physiology or Medicine awarded to John Gurdon and Shinya Yamanaka.

Reprod Biomed Online. 2012; 25(6):549-50.

9.

Lowry WE, Plath K. The many ways to make an iPS cell. Nat Biotechnol.

2008; 26(11):1246-8.

10. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian

S, et al. Induced pluripotent stem cell lines derived from human somatic

cells. Science. 2007; 318(5858):1917-20.

11. Takahashi K, Yamanaka S. Induced pluripotent stem cells in medicine and

biology. Development. 2013; 140(12):2457-61.

12. Apostolou E, Hochedlinger K. Chromatin dynamics during cellular

reprogramming. Nature. 2013; 502(7472):462-71.

13. Chin MH, Mason MJ, Xie W, Volinia S, Singer M, Peterson C, et al. Induced

pluripotent stem cells and embryonic stem cells are distinguished by gene

expression signatures. Cell Stem Cell. 2009; 5(1):111-23.

14.

Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, et al. Epigenetic memory in

induced pluripotent stem cells. Nature. 2010; 467(7313):285-90.

15.

Polo JJM, Liu S, Figueroa MME, Kulalert W, Eminli S, Tan KY, et al. Cell

type of origin influences the molecular and functional properties of mouse

induced pluripotent stem cells. Nat Biotechnol. 2010; 28(8):848-55.

16.

Nashun B, Hill PWS, Hajkova P. Reprogramming of cell fate: epigenetic

memory and the erasure of memories past. EMBO J. 2015; 34(10):1296-308.

17. Waddington CH. The epigenotype. 1942. Int J Epidemiol. 2012; 41(1):10-3.

18.

Haig D. The (dual) origin of epigenetics. Cold Spring Harb Symp Quant

Biol. 2004; 69:67-70.

19.

Kim SY, Morales CR, Gillette TG, Hill JA. Epigenetic regulation in heart

failure. Curr Opin Cardiol. 2016; 31(3):255-65.

20. Abdolmaleky HM, Zhou J-R, Thiagalingam S. An update on the epigenetics

of psychotic diseases and autism. Epigenomics. 2015; 7(3):427-49.

21.

Faroogi AA, Tang JY, Li RN, Ismail M, Chang YT, Shu CW, et al. Epigenetic

mechanisms in cancer: push and pull between kneaded erasers and fate

writers. Int J Nanomedicine. 2015; 10:3183-91.

22. Coppedè F. The potential of epigenetic therapies in neurodegenerative

diseases. Front Genet. 2014; 5:220.

23. Gładych M, Andrzejewska A, Oleksiewicz U, Estécio MRH. Epigenetic

mechanisms of induced pluripotency. Contemp Oncol (Pozn). 2015;

19(1A):A30-8.

24.

Djuric U, Ellis J. Epigenetics of induced pluripotency, the seven-headed

dragon. Stem Cell Res Ther. 2010; 1(1):3.

25.

Liang G, Zhang Y. Embryonic stem cell and induced pluripotent stem cell:

an epigenetic perspective. Cell Res. 2013; 23(1):49-69.

26.

Hackett JA, Surani MA. DNA methylation dynamics during the mammalian

life cycle. Philos Trans R Soc Lond B Biol Sci. 2013; 368(1609):20110328.

27.

Nishino K, Toyoda M, Yamazaki-Inoue M, Fukawatase Y, Chikazawa E,

Sakaguchi H, et al. DNA methylation dynamics in human induced pluripotent

stem cells over time. PLoS Genet. 2011; 7(5):5-8.

28.

Popp C, Dean W, Feng S, Cokus SJ, Andrews S, Pellegrini M, et al. Genome-

wide erasure of DNA methylation in mouse primordial germ cells is affected

by AID deficiency. Nature. 2010; 463(7284):1101-5.

29.

Doege CA, Inoue K, Yamashita T, Rhee DB, Travis S, Fujita R, et al. Early-

-stage epigenetic modification during somatic cell reprogramming by Parp1

and Tet2. Nature. 2012; 488(7413):652-5.

30. Costa Y, Ding J, Theunissen TW, Faiola F, Hore TA, Shliaha PV, et al. NANOG-

-dependent function of TET1 and TET2 in establishment of pluripotency. Na-

ture. 2013; 495(7441):370-4.

31. Gao Y, Chen J, Li K, Wu T, Huang B, LiuW, et al. Replacement of Oct4 by Tet1

during iPSC induction reveals an important role of DNA methylation and

hydroxymethylation in reprogramming. Cell Stem Cell. 2013; 12(4):453-69.

32. Watanabe A, Yamada Y, Yamanaka S. Epigenetic regulation in pluripotent

stem cells: a key to breaking the epigenetic barrier. Phil Trans R Soc. 2013;

368:(1609):20120292.

33.

Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, et al.

Dissecting direct reprogramming through integrative genomic analysis.

Nature. 2008; 454(7200):49-55.

34. Wang T, Chen K, Zeng X, Yang J, Wu Y, Shi X, et al. The histone demethylases

Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent

manner. Cell Stem Cell. 2011; 9(6):575-87.

35.

Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, et al. Vitamin C enhances

the generation of mouse and human induced pluripotent stem cells. Cell

Stem Cell. 2010; 6(1):71-9.

36.

Bagci H, Fisher AG. DNA demethylation in pluripotency and reprogramming:

the role of Tet proteins and cell division. Cell Stem Cell. 2013; 13(3):265-9.

37.

Sadakierska-Chudy A, Filip M. A comprehensive view of the epigenetic

landscape. Part II: Histone post-translational modification, nucleosome level,

and chromatin regulation by ncRNAs. Neurotox Res. 2014; 27(2):172-97.

38.

Eissenberg JC, Shilatifard A. Histone H3 lysine 4 (H3K4) methylation in

development and differentiation. Dev Biol. 2010; 339(2):240-9.

39.

Becker JS, Nicetto D, Zaret KS. H3K9me3-dependent heterochromatin:

barrier to cell fate changes. Trends Genet. 2016; 32(1):29-41.

40.

Lin T, Wu S. Reprogramming with small molecules instead of exogenous

transcription factors. Stem Cells Int. 2015; 2015:794632.

41.

Rais Y, Zviran A, Geula S, Gafni O, Chomsky E, Viukov S, et al. Deterministic

direct reprogramming of somatic cells to pluripotency. Nature. 2013;

502(7469):65-70.

42.

Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, et al. Pluripotent stem cells induced

from mouse somatic cells by small-molecule compounds. Science. 2013;

341(6146):651-4.

43.

Shi Y, Desponts C, Do JT, Hahm HS, Schöler HR, Ding S. Induction of

pluripotent stem cells frommouse embryonic fibroblasts by Oct4 and Klf4

with small-molecule compounds. Cell Stem Cell. 2008; 3(5):568-74.

44.

Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE, et al.

Induction of pluripotent stem cells by defined factors is greatly improved

by small-molecule compounds. Nat Biotechnol. 2008; 26(7):795-7.

45. Chen J, Liu H, Liu J, Qi J, Wei B, Yang J, et al. H3K9 methylation is a barrier

during somatic cell reprogramming into iPSCs. Nat Genet. 2013; 45(1):34-42.

46.

Liang G, Taranova O, Xia K, Zhang Y. Butyrate promotes induced pluripotent

stem cell generation. J Biol Chem. 2010; 285(33):25516-21.

47.

Onder TT, Kara N, Cherry A, Sinha AU, Zhu N, Bernt KM, et al. Chromatin-

-modifying enzymes as modulators of reprogramming. Nature. 2012;

483(7391):598-602.

48.

Liang G, He J, Zhang Y. Kdm2b promotes induced pluripotent stem cell

generation by facilitating gene activation early in reprogramming. Nat Cell

Biol. 2012; 14(5):457-66.

49.

Zare M, Soleimani M, Akbarzadeh A, Bakhshandeh B, Aghaee-Bakhtiari SH,

Zarghami N. A novel protocol to differentiate induced pluripotent stem

cells by neuronal microRNAs to provide a suitable cellular model. Chem

Biol Drug Des. 2015; 86(2):232-8.

50.

Li MA, He L. microRNAs as novel regulators of stem cell pluripotency and

somatic cell reprogramming. Bioessays. 2012; 34(8):670-80.

51. Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R. DGCR8 is essential

for microRNA biogenesis and silencing of embryonic stem cell self-renewal.

Nat Genet. 2007; 39(3):380-5.

52. Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R. Embryonic

stem cell-specific microRNAs regulate the G1-S transition and promote

rapid proliferation. Nat Genet. 2008; 40(12):1478-83.

53.

He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation.

Nat Rev Genet. 2004; 5(7):522-31.

54.

Judson RL, Babiarz JE, Venere M, Blelloch R. Embryonic stem cell-specific

microRNAs promote induced pluripotency. Nat Biotechnol. 2009; 27(5):459-61.

55.

Subramanyam D, Lamouille S, Judson RL, Liu JY, Bucay N, Derynck R, et

al. Multiple targets of miR-302 and miR-372 promote reprogramming of

human fibroblasts to induced pluripotent stem cells. Nat Biotechnol. 2011;

29(5):443-8.

56.

Lin SL, Chang DC, Lin CH, Ying SY, Leu D, Wu DTS. Regulation of somatic

cell reprogramming through inducible mir-302 expression. Nucleic Acids

Res. 2011; 39(3):1054-65.

57. Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, et al. Highly

efficient miRNA-mediated reprogramming of mouse and human somatic

cells to pluripotency. Cell Stem Cell. 2011; 8(4):376-88.

58.

Hu S, Wilson KD, Ghosh Z, Han L, Wang Y, Lan F, et al. MicroRNA-302

increases reprogramming efficiency via repression of NR2F2. Stem Cells.

2013; 31(2):259-68.

59.

Samavarchi-Tehrani P, Golipour A, David L, Sung HK, Beyer TA, Datti A,

et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial

transition in the initiation of somatic cell reprogramming. Cell Stem Cell.

2010; 7(1):64-77.

60.

Li Z, Yang C, Nakashima K, Rana TM. Small RNA-mediated regulation of

iPS cell generation. EMBO J. 2011; 30(5):823-34.

61.

Li Z, Dang J, Chang K, Rana TM. MicroRNA-mediated regulation of

extracellular matrix formation modulates somatic cell reprogramming. RNA.

2014; 20(12):1900-15.