Previous Page  12 / 105 Next Page
Information
Show Menu
Previous Page 12 / 105 Next Page
Page Background

C

hen

MJ

et

al

.

732

R

ev

A

ssoc

M

ed

B

ras

2017; 63(9):729-732

A retrospective study conducted from multi-institu-

tional databases also evaluated the role of radiotherapy

techniques in patient survival, demonstrating the supe-

riority of IMRT or conformal techniques compared to

the conventional technique, with 5-year survival rates of

14% for IMRT or conformal radiotherapy compared with

11% for conventional radiotherapy (p=0.0001). Another

similar study demonstrated a better overall survival in the

comparison between the IMRT or conformal radiotherapy

techniques and the conventional technique, but did not

demonstrate superiority of IMRT over conformal radio-

therapy in terms of survival.

22,23

(B)

C

onclusion

Treatment with IMRT can provide more conformality and

protect more critical structures than conformal radio-

therapy, also allowing the dose escalation within the target,

without prolonging the treatment time. It is particularly

indicated for “superior sulcus” (Pancoast tumors), para-

vertebral and paracardiac tumors and in complex clinical

situations in which conformal radiotherapy does not enable

the release of non-toxic doses to organs at risk.

24

IMRT significantly reduces the risk of worsening

quality of life in lung cancer patients undergoing radia-

tion therapy.

There is less toxicity with the use of IMRT compared

with conformal radiotherapy for primary lung tumors,

particularly regarding the rates of grade ≥ 3 pneumonitis

and requiring feeding tube.

There is also longer survival with the use of IMRT or

conformal radiotherapy in relation to conventional ra-

diotherapy, but not with IMRT compared with conven-

tional radiotherapy.

C

onflict

of

interest

The authors declare no conflict of interest.

R

eferences

1.

Slotman BJ, van Tinteren H, Praag JO, Knegjens JL, El Sharouni SY, Hatton

M, et al. Use of thoracic radiotherapy for extensive stage small-cell lung cancer:

a phase 3 randomised controlled trial. Lancet. 2015; 385(9962):36-42.

2. Turrisi AT 3rd, Kim K, Blum R, Sause WT, Livingston RB, Komaki R, et al.

Twice-daily compared with once-daily thoracic radiotherapy in limited small-

cell lung cancer treated concurrently with cisplatin and etoposide. N Engl

J Med. 1999; 340(4):265-71.

3.

Burdett S, Rydzewska L, Tierney J, Fisher D, Parmar MK, Arriagada R, et al.;

PORT Meta-analysis Trialists Group. Postoperative radiotherapy for non-

small cell lung cancer. Cochrane Database Syst Rev. 2005; 10:CD002142.

4.

Rusch VW, Giroux DJ, Kraut MJ, Crowley J, Hazuka M, Johnson D, et al.

Induction chemoradiation and surgical resection for non-small cell lung

carcinomas of the superior sulcus: Initial results of Southwest Oncology

Group Trial 9416 (Intergroup Trial 0160). J Thorac Cardiovasc Surg. 2001;

121(3):472-83.

5. Aupérin A, Le Péchoux C, Rolland E, Curran WJ, Furuse K, Fournel P, et al.

Meta-analysis of concomitant versus sequential radiochemotherapy in locally

advanced non-small-cell lung cancer. J Clin Oncol. 2010; 28(13):2181-90.

6. Almeida CE, Haddad CK, Ferrigno R. A evolução técnica da radioterapia

externa. In: Sociedade Brasileira de Radioterapia. Radioterapia Baseada em

Evidências. Recomendações da Sociedade Brasileira de Radioterapia. São

Paulo: SBRT. Cap. 2, p. 21-6.

7.

Bentzen SM, Constine LS, Deasy JO, Eisbruch A, Jackson A, Marks LB, et

al. Quantitative analyses of normal tissue effects in the clinic (QUANTEC):

an introduction to the scientific issues. Int J Radiat Oncol Biol Phys. 2010;

76(3 Suppl):S3-9.

8.

Kong FM, Zhao J, Wang J, Finn CF. Radiation dose effect in locally advanced

non-small cell lung cancer. J Thorac Dis. 2014; 6(4):336-47.

9.

Sundar JK, Mullapudi N, Yao H, Spivack SD, Rahman I. Lung cancer and

its association with chronic obstructive pulmonary disease: update on nexus

of epigenetics. Curr Opin Pulm Med. 2011; 17(4):279-85.

10.

Liu HH, Wang X, Dong L, Wu Q, Liao Z, Stevens CW, et al. Feasibility of

sparing lung and other thoracic structures with intensity-modulated

radiotherapy for non-small cell lung cancer. Int J Radiat Oncol Biol Phys.

2004; 58(4):1278-79.

11.

Shirvani SM, Juloori A, Allen PK, Komaki R, Liao Z, Gomez D, et al. Comparison

of 2 common radiation therapy techniques for definitive treatment of small

cell lung cancer. Int J Radiat Oncol Biol Phys. 2013; 87(1):139-47.

12.

Shirvani SM, Jiang J, Gomez DR, Chang JY, Buchholz TA, Smith B. Intensity

modulated radiotherapy for stage III non-small cell lung cancer in the United

States: predictors of use and association with toxicities. Lung Cancer. 2013;

82(2):252-9.

13. Chang JY. Intensity-modulated radiotherapy, not 3 dimensional conformal,

is the preferred technique for treating locally advanced lung cancer. Semin

Radiat Oncol. 2015; 25(2):110-6.

14. Yom SS, Liao Z, Liu HH, Tucker SL, Hu CS, Wei X, et al. Initial evaluation

of treatment-related pneumonitis in advanced-stage non-small-cell lung

cancer patients treated with concurrent chemotherapy and intensity-

modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2007; 68(1):94-102.

15.

Liao ZX, Komaki RR, Thames HD Jr, Liu HH, Tucker SL, Mohan R, et al.

Influence of technologic advances on outcomes in patients with unresectable

locally advanced non-small-cell lung cancer receiving concomitant

chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2010; 76(3):775-81.

16. Graham MV, Purdy JA, Emami B, Harms W, Bosch W, Lockett MA, et al.

Clinical dose-volume histogram analysis for pneumonitis after 3D treatment

for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys. 1999;

45(2):323-9.

17.

Hope AJ, Lindsay PE, El Naqa I, Alaly JR, Vicic M, Bradley JD, et al. Modeling

radiation pneumonitis risk with clinical, dosimetric, and spatial parameters.

Int J Radiat Oncol Biol Phys. 2006; 65(1):112-24.

18.

Rodrigues G, Lock M, D’Souza D, Yu E, Van Dyk J. Prediction of radiation

pneumonitis by dose-volume histogram parameters in lung cancer – a

systematic review. Radiother Oncol. 2004; 71(2):127-38.

19.

Bradley J, GrahamMV, Winter K, Purdy JA, Komaki R, Roa WH, et al. Toxicity

and outcome results of RTOG 9311: a phase I-II dose-escalation study using

three-dimensional conformal radiotherapy in patients with inoperable non-

small-cell lung carcinoma. Int J Radiat Oncol Biol Phys. 2005; 61(2):318-28.

20.

Rose J, Rodrigues G, Yaremko B, Lock M, D’Souza D. Systematic review of

dose-volume parameters in the prediction of esophagitis in thoracic

radiotherapy. Radiother Oncol. 2009; 91(3):282-7.

21.

Movsas B, Hu C, Sloan J, Bradley J, Kavadi VS, Narayan S, et al. Quality of

Life (QOL) analysis of the Randomized Radiation (RT) dose-escalation

NSCLC Trial (RTOG 0617): the rest of the story. Int J Radiat Oncol Biol

Phys. 2013; 87(2):suppl, S1-2.

22.

Sher DJ, Koshy M, Liptay MJ, Fidler MJ. Influence of conformal radiotherapy

technique on survival after chemoradiotherapy for patients with stage III

non-small cell lung cancer in the National Cancer Data Base. Cancer. 2014;

120(13):2060-8.

23.

Harris JP, Murphy JD, Hanlon AL, Le QT, Loo BW Jr, Diehn M. A population-

based comparative effectiveness study of radiation therapy techniques in

stage III non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2014;

88(4):872-84.

24. Ayadi M, Zahra N, Thariat J, Bouilhol G, Boissard P, Van Houtte P, Claude

L, Mornex F. Radiothérapie conformationelle avec modulation d’intensité

dans les carcinomes bronchiques non à petites cellules. Cancer Radiotherapie.

2014; 18(5-6):406-13.