Previous Page  89 / 100 Next Page
Information
Show Menu
Previous Page 89 / 100 Next Page
Page Background

Z

inc

and

metalloproteinases

2

and

9: W

hat

is

their

relation

with

breast

cancer

?

R

ev

A

ssoc

M

ed

B

ras

2017; 63(1):78-84

83

matriz, as quais parecem estar envolvidas na propagação

de vários tipos de neoplasias, incluindo o câncer de mama.

Além disso, é provável que o zinco transportado seja utili-

zado para metalação do domínio catalítico das metalopro-

teinases recentemente sintetizadas antes de serem segrega-

das. Nesse sentido, o aumento das concentrações de zinco

em compartimentos celulares e a redução desse oligoele-

mento no sangue de pacientes com câncer de mama pare-

cem alterar a atividade das metaloproteinases 2 e 9, con-

tribuindo para a ocorrência de tumor maligno. Assim,

faz-se necessária a realização de novos estudos na perspec-

tiva de esclarecer o papel do zinco e das metaloproteinases

2 e 9 na patogênese do câncer de mama.

Palavras-chave

: zinco, metaloproteinases da matriz, neo-

plasias da mama.

R

eferences

1.

Silva AG, Ewald IP, Sapienza M, Pinheiro M, Peixoto A, Nóbrega AF, et al.

Li-Fraumeni-like syndrome associated with a large BRCA1 intragenic deletion.

BMC Cancer. 2012; 12:237.

2.

Peto J, Houlston RS. Genetics and the common cancers. Eur. J. Cancer 2001;

37(Suppl.8):S88-96.

3.

Harris HR, Bergkvist L, Wolk A. Vitamin C intake and breast cancer mortality

in a cohort of Swedish women. Br J Cancer. 2013; 109(1):257-64.

4.

Lowe NM, Fekete K, Decsi T. Methods of assessment of zinc status in humans:

a systematic review. Am J Clinical Nutrition. 2009; 89(6):2040S-51S.

5.

Lin CY, Tsai PH, Kandaswami CC, Lee P, Huang CJ, Hwang JJ, et al. Matrix

metalloproteinase-9 cooperates with transcription factor Snail to induce

epithelial-mesenchymal transition. Cancer Sci. 2011; 102(4):815-27.

6.

Shuman Moss LA, Jensen-Taubman S, Stetler-Stevenson WG. Matrix

metalloproteinases: changing roles in tumor progression and metastasis.

Am J Pathol. 2012; 181(6):1895-9.

7.

Lindsey ML, Zamilpa R. Temporal and spatial expression of matrix

metalloproteinases and tissue inhibitors of metalloproteinases following

myocardial infarction. Cardiovasc Ther. 2012; 30(1):31-41.

8.

Delabio-Ferraz E, Aguiar Neto JP, Takiya CM, Lacombe DP. Rana catesbeiana,

pólvora e modulação supramolecular cicatrização intestinal e prognóstico

no câncer de cólon: uma mesma origem biológica para o insucesso? Rev

Bras Colo-proctol. 2010; 30(2):141-51.

9.

Perches CS, Brandão CVS, Ranzani JJT, Rocha NS, Sereno MG, Fonzar JF.

Matriz metaloproteinases na reparação corneal. Revisão de literatura. Vet

Zootec. 2012; 19(4):480-9.

10.

Mani SK, Kern CB, Kimbrough D, Addy B, Kasiganesan H, Rivers H, et al.

Inhibition of class I histone deacetylase activity represses matrix

metalloproteinase-2 and -9 expression and preserves LV function

postmyocardial infarction. Am J Physiol Heart Circ Physiol. 2015;

308(11):H1391-401.

11.

Fu MM, Fu E, Kuo PJ, Tu HP, Chin YT, Chiang CY, et al. Gelatinases and

extracellular matrix metalloproteinase inducer are associated with

cyclosporin-A-induced attenuation of periodontal degradation in rats. J

Periodontol. 2015; 86(1):82-90.

12. Freise C, Querfeld U. The lignan (+)-episesamin interferes with TNF-

α

-induced

activation of VSMC via diminished activation of NF-

κ

B, ERK1/2 and AKT

and decreased activity of gelatinases. Acta Physiol. 2015; 213(3):642-52.

13. Ala-Aho R, Kähäri VM. Collagenases in cancer. Biochimie. 2005; 87(3-

4):273-86.

14.

Hadler-Olsen E, Fadnes B, Sylte I, Uhlin-Hansen L, Winberg JO. Regulation

of matrix metalloproteinase activity in health and disease. FEBS J. 2011;

278(1):28-45.

15. Coussens LM, Werb Z. Matrix metalloproteinases and the development of

cancer. Chem Biol. 1996; 3(11):895-904.

16.

Liotta LA, Thorgeirsson UP, Garbisa S. Role of collagenases in tumor cell

invasion. Cancer Metastasis Rev. 1982; 1(4):277-88.

17.

Noël A, Jost M, Maquoi E. Matrix metalloproteinases at cancer tumor-host

interface. Semin Cell Dev Biol. 2008; 19(1):52-60.

18.

Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier JP, Gray JW, et al.

The stromal proteinase MMP3/stromelysin-1 promotes mammary

carcinogenesis. Cell. 1999; 98(2):137-46.

19.

Polette M, Gilbert N, Stas I, Nawrocki B, Noël A, Remacle A, et al. Gelatinase

A expression and localization in human breast cancers. An in situ

hybridization study and immunohistochemical detection using confocal

microscopy. Virchows Arch. 2004; 424(6):641-5.

20.

Egeblad M, Werb Z. New functions for the matrix metalloproteinases in

cancer progression. Nat Rev Cancer. 2002; 2(3):161-74.

21.

van ’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene

expression profiling predicts clinical outcome of breast cancer. Nature. 2002;

415(6871):530-6.

22.

Koshikawa N, Giannelli G, Cirulli V, Miyazaki K, Quaranta V. Role of cell

surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5.

J Cell Biol. 2000; 148(3):615-24.

23. Patel BP, Shah SV, Shukla SN, Shah PM, Patel PS. Clinical significance of MMP-

2 and MMP-9 in patients with oral cancer. Head Neck. 2007; 29(6):564-72.

24.

Jinga DC, Blidaru A, Condrea I, Ardeleanu C, Dragomir C, Szegli G, et

al. MMP-9 and MMP-2 gelatinases and TIMP-1 and TIMP-2 inhibitors

in breast cancer: correlations with prognostic factors. J Cell Mol Med.

2006; 10(2):499-510.

25.

Daniele A, Zito AF, Giannelli G, Divella R, Asselti M, Mazzocca A, et al.

Expression of metalloproteinases MMP-2 and MMP-9 in sentinel lymph

node and serum of patients with metastatic and non-metastatic breast

cancer. Anticancer Res. 2010; 30(9):3521-7.

26.

Somiari SB, Somiari RI, Heckman CM, Olsen CH, Jordan RM, Russell SJ, et

al. Circulating MMP2 and MMP9 in breast cancer – potential role in

classification of patients into low risk, high risk, benign disease and breast

cancer categories. Int J Cancer. 2006; 119(6):1403-11.

27. Vasaturo F, Solai F, Malacrino C, Nardo T, Vincenzi B, Modesti M, et al.

Plasma levels of matrix metalloproteinases 2 and 9 correlate with histological

grade in breast cancer patients. Oncol Lett. 2013; 5(1):316-20.

28. Č

upi

ć

DF, Tešar EC, Ilijaš KM, Nemrava J, Kova

č

evi

ć

M, Musta

ć

E. Expression

of matrix metalloproteinase 9 in primary and recurrent breast carcinomas.

Coll Antropol. 2011; 35(Suppl 2):7-10.

29.

Zucker S, Hymowitz M, Conner C, Zarrabi HM, Hurewitz AN, Matrisian L,

et al. Measurement of matrix metalloproteinases and tissue inhibitors of

metalloproteinases in blood and tissues. Clinical and experimental

applications. Ann N Y Acad Sci. 1999; 878:212-27.

30.

Hwang BM, Chae HS, Jeong YJ, Lee YR, Noh EM, Youn HZ, et al. Protein

tyrosine phosphatase controls breast cancer invasion through the expression

of matrix metalloproteinase-9. BMB Rep. 2013; 46(11):533-8.

31. Gong Y, Chippada-Venkata UD, Oh WK. Roles of matrix metalloproteinases

and their natural inhibitors in prostate cancer progression. Cancers (Basel).

2014; 6(3):1298-327.

32.

Benson CS, Babu SD, Radhakrishna S, Selvamurugan N, Ravi Sankar B.

Expression of matrix metalloproteinases in human breast cancer tissues.

Dis Markers. 2013; 34(6):395-405.

33.

Klein T, Bischoff R. Physiology and pathophysiology of matrix

metalloproteases. Amino Acids. 2011; 41(2):271-90.

34.

Kambe T. An overview of a wide range of functions of ZnT and Zip zinc

transporters in the secretory pathway. Biosci Biotechnol. Biochem. 2011;

75(6):1036-43.

35.

Morcos NY, Zakhary NI, Said MM, Tadros MM. Postoperative simple

biochemical markers for prediction of bone metastases in Egyptian breast

cancer patients. Ecancermedicalscience. 2013; 7:305.

36.

Holanda AON. Relação entre os parâmetros bioquímicos do zinco e as

concentrações das metaloproteinases 2 e 9 em mulheres com câncer de

mama. [Dissertation]. Teresina: Universidade Federal do Piauí; 2014.

37. Taylor KM, Morgan HE, Smart K, Zahari NM, Pumford S, Ellia IO, et al.

The emerging role of the LIV-1 subfamily of zinc transporters in breast

cancer. Mol Med. 2007; 13(7-8):396-406.

38.

Kelleher SL, Seo YA, Lopez V. Mammary gland zinc metabolism: regulation

and dysregulation. Genes Nutr. 2009; 4(2):83-94.

39.

Kelleher SL, McCormick NH, Velasquez V, Lopez V. Zinc in specialized

secretory tissues: roles in the pancreas, prostate, and mammary gland. Adv

Nutr. 2011; 2(2):101-11.